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Heterogeneity robust difference-in-differences (DiD) methods directly compare changes in treated
units to changes in control units (Callaway and Sant’Anna, 2021). Estimating long-run treatment
effects requires control units that remain untreated throughout the entire post-treatment window for
the cohort of interest. These controls are unavailable whenever researchers (choose to) observe fewer
pre-treatment periods than post-treatment periods.! This may arise due to data construction limits;
in administrative datasets, units may only appear for a few periods before their own treatment. Or,
this could be a design choice to limit the control group to only the units that are soon-to-be-treated.
We show that the cohort-stacked difference-in-differences (CCDID) estimator can identify long run

effects by chaining together successive soon-to-be-treated controls.?

When common trends and no anticipation hold across all cohorts and time periods, standard meth-
ods unnecessarily restrict the control group and recover only a subset of the parameters identified by
the assumptions and data. The rank condition necessary to identify the cohort-stacked regression
is weaker than the “strict balance” condition that the same control cohorts appear in the refer-
ence pre-period and the time period of interest. Intuitively, the cohort-stacked regression chains
together overlapping control cohorts. If cohort A provides the trend from periods 1 to 3, and cohort

B provides the trend from periods 3 to 5, chaining recovers the full trend from periods 1 to 5.3

We demonstrate the approach through an application to earnings effects of parenthood. Following
Cortés and Pan (2023), we restrict to parents within five years of first birth to ensure compa-
rable controls. Standard methods identify effects only four years post-birth due to the five-year

observation window. Chaining extends identification to eight years post-birth.

This note proceeds as follows. Section 1 formalizes the setting and assumptions and introduces
our chaining identification strategy. Section 2 presents our regression-based estimation strategy
using a cohort-stacked framework that jointly recovers all event-time treatment effects. Section 3
demonstrates the methodology through an application to the motherhood earnings penalty litera-
ture as in Cortés and Pan (2023). Section 4 concludes by discussing the implications of the chaining

methodology for empirical practice in staggered adoption settings.

1 Identification: Chaining Cohorts with Common Trends

The cohort-chained estimator uses the same common trends and no anticipation assumptions as
the “direct” estimators, but identifies dynamic effects up to longer time horizons. It relies on the

easily testable condition that multiple not-yet-treated cohorts overlap and can be chained together.

'Here we consider post-treatment as inclusive of the period in which treatment occurs.

2Tt is also robust to heterogeneous treatment effects when there are multiple (staggered) treatment dates, like the
recent estimators proposed by Sun and Abraham (2020), de Chaisemartin and D’Haultfeeuille (2020), Callaway and
Sant’Anna (2021), and Borusyak, Jaravel and Spiess (2024).

3Bellégo, Benatia and Dortet-Bernadet (2025) make a similar argument in unbalanced panels with attrition or rotating
sampling designs. In contrast, this paper focuses specifically on staggered treatment settings where entire cohorts
are observed for only a limited window before treatment. Additionally, we propose a simple “one shot” regression in
contrast to their direct (multi-step) GMM estimator.



1.1 The DiD Setting

All units receive an absorbing treatment, but there is variation in treatment timing.* Let G; denote
unit i’s treatment period, Y;; the outcome, and r;; =t — G; the periods since treatment. Following
the literature, let Y;4(g) be the potential outcome in time ¢ when treated in time g and Yj;(oco) be

the untreated potential outcome.

The average treatment effect for cohort g in period t is:
ATTy(g) = E[Yit(g) — Yie(o0)|Gi = g] (1)

We observe the potential outcomes that corresponds to the realized treatment timing Y, = Y (G;)
not the counterfactual untreated potential outcome E[Y;;(c0)|G; = g]. The untreated potential

outcome is identified under the canonical common trends and no anticipation assumptions.

Assumption 1 (CT). For every pair of cohorts g and g’ with and every pair of time periods t # t':
E[Yit(00) — Yir(00)|Gi = g] = E[Yi(00) — Yir (00)|Gi = '] (2)

Assumption 2 (NA). For every cohort g and allt < g:
E[Yit(9) | Gi = g] = E[Yis(o0) | Gi = g] (3)

1.2 The (Potentially Infeasible) Direct Approach

The direct DiD approach uses a not-yet-treated cohort g’ > t observed in both a reference period

s < g and target period t:

E[Yi(00)|Gi = gl = E[Yis|Gi = g] +E[Yis - Yis|Gi = g] (4)

“level” from s (NA) “trend” from g’ (CT)

The direct plug in estimator is feasible when ¢’ is observed in both s and ¢t. When no such cohort
exists (i.e. when there are fewer pre-treatment periods than post-treatment periods) the direct

estimators following Callaway and Sant’Anna (2021) are not feasible.

1.3 Chaining Through Intermediate Periods

When no single control cohort is observed in both s and ¢, we can “chain” trends through interme-
diate periods. Suppose cohort ¢’ exists in periods p and ¢, while cohort ¢” exists in periods s and

p, where s < p < t.

“Either there are no never-treated units in the data, or researchers make a common trends assumption only among
units that are ever treated.



Under common trends:

E[Yi¢(00)|G;i = g] = E[Yis|G; = g]

+ (ElVit = YiplGi = g'1) + (E[Yyp — VislGi = 9]) (5)
Trend f;c:m ptot Trend from s to p

The first bracketed term uses ¢’ to link periods p and t. The second uses ¢g” to link periods s and
p. Together, they construct the full counterfactual trend from s to t.
1.3.1 An Example of When Chaining Works

Figure 1 presents a view of the relative years that exist for each cohort (x-axis) and calendar year

(y-axis) in a hypothetical example where each cohort is observed for 4 years before treatment.

In this example, the direct estimator is only feasible up to relative time 2. In relative time 3, there is
no single cohort with pre-treatment observations in both relative periods —1 to 3 for the cohort of
interest. However, a “chain” of overlapping control cohorts does connect these periods. The orange

squares highlight one such chain that identifies the counterfactual time trend.

2 Estimation: Chaining Cohorts through a Stacked Regression

We implement the chaining estimator through a cohort-stacked regression, similar to Wing, Freed-
man and Hollingsworth (2024).
2.1 Regression specification for a single cohort

Fix a treated cohort g. Then subset the data to include all observations for cohort g and only

pre-treatment observations for all cohorts g’ > g.

Formally, we keep the following observations:

{(i,t) : G; = g} and {(3,t) : G; > g and t < G;} (6)
S
Treatment Control

Chaining requires overlap between sequential cohorts to reconstruct counterfactual trends through
intermediate periods.® This is a testable condition. Researchers can verify whether their data struc-

ture permits chaining for desired horizons.

Within this subset, estimate:

Yie = Z’Yg’l{Gi = g/} + ZTsl{t = 3} + Z 5rgl{Gi =g,r=1— g} + €t (7)
g’ s r#—1

SFormally, the design matrix has full rank if and only if all cohorts and time periods belong to the same connected
set.



where v, are cohort fixed effects, 7, are period fixed effects, and d,4 captures treatment effects for

the cohort of interest g at relative time 7.

This specification uses all available pre-treatment cohorts as controls and estimates all relative-time
effects for cohort g simultaneously. The chaining argument identifies the period fixed effects 75, even

as the composition of control cohorts changes. See Appendix A.1 for further discussion.

2.2 Manual aggregation through a stacked regression

Instead of estimating effects for each cohort separately, create an estimation dataset that “stacks”
each cohort-specific “slice.” Also, create a variable with the “slice” identifier. Then, fully interacting
all the variables in the regression in Equation (7) with the vector of slice indicators recovers the

same point estimates as the series of subset-specific regressions.

Let k denote the treated cohort in a particular slice. Then the fully saturated regression is:

Yie =Y > wl{Gi=g}+) > mi{t=st+> > oul{Gi=kr=t—k}+eun ()
kg ks

k r#—1

Notice now that the cohort fixed effects 75,, the time trends 7%, and the dynamic effects 6,4 are

R
slice-specific and thus do not include undesired cross-slice contrasts. The stacked regression is useful
since jointly estimating these parameters recovers the full variance-covariance matrix for all cohort-
by-relative time estimates. This makes it straightforward to calculate the standard errors for linear

combinations of the slice-specific treatment effects for cohort k in relative period 7, d,.

The slice-specific treatment effects 6, represent the treatment effect for cohort k at relative time r.
One natural way to aggregate these into relative-time effects across cohorts is to weight by cohort
size:
ATT, = Z ATT,(g) - P[G; = g|observed at r] 9)
g
This manual aggregation provides full control over weighting but requires additional computation.
Section 2.3 demonstrates how the semi-saturated stacked regression directly estimates these aggre-

gated parameters.

2.3 One-shot aggregation in a stacked regression

In the leading case where the target parameters are relative-time aggregates, the semi-saturated
regression will recover a non-negative cohort size-weighted average of the cohort-specific dynamic

effects.

The semi-saturated regression interacts the vector of slice indicators fully with the vector of time



effects and the vector of cohort effects, but not the dynamic effects of interest.

Yi = ZZyg,l{Gi =4} + ZZTfl{t =s}+ Z UG =k,r=t—k}+ e (10)
g ks

k r#£—1

The 9, coefficients are cohort size-weighted averages of the underlying cohort-specific treatment

effects 9.

6= 0pg xP[Gi=g|Gi=k,r=t—k (11)
g€eg

Since all other coefficients in the regression are fully interacted with the slice indicators, the relative
time indicators are identified only from within-slice variation, avoiding the undesired contrasts in
the canonical TWFE specification documented in the large recent literature (see Roth et al. (2023)

for a review). See Appendix B for details.

The tradeoff between the one-shot and manual aggregation is one between simplicity and control.
In the one-shot regression, the semi-saturated regression recovered a cohort size-weighted average
of the underlying cohort-specific treatment effects 9,4, which will reflect the sizes of the cohorts. In
contrast, the manual aggregation of the slice-specific effects allows researchers to directly choose
the weights in the aggregation, but requires the additional matrix multiplication step to compute

point estimates and standard errors.

3 Application: The Effects of Children on Parental Earnings

Event studies are often used to study the effect of the arrival of children on labor market earnings.
In this literature, it is common to have fewer pre-treatment than post-treatment observations. For
example, Cortés and Pan (2023) use 5 years of pre-treatment data and are interested in long-run
effects up to 8 years after treatment. Kleven, Landais and Sggaard (2019) also use 5 years of pre-
treatment data and is interested in long-run effects up to 10 years after treatment. These longer run
effects are identified in the canonical TWFE specification, which can include unintended contrasts
with already-treated units (Roth et al., 2023).

3.1 Setting

Cortés and Pan (2023) use the 1976 to 2017 waves of the Panel Study of Income Dynamics (PSID)
to estimate the impacts of parenthood on earnings. They restrict the PSID sample to household
heads and spouses/cohabiters between the ages of 20 and 55 years old and who had their first child
between the ages of 20 and 45. Further inclusion criteria include parents who are observed at least
once before and after the birth of their first child and whose earnings outcomes are observed at least

four times during the fifteen-year window (five periods before and 10 periods after) surrounding



the year of birth. The main outcome in their paper is annual labor earnings (total labor income

before taxes and transfers for the year prior to the interview).

3.2 Implementation

We follow Cortés and Pan (2023) and restrict to parents within 5 years of the birth of their first
child in the main specification. We also interact the time trend with the parent’s year of birth
to allow for life cycle effects. Effects are estimated separately for men and women. The thought
experiment is thus to compare women born in 1990 who first become mothers in 2020 to other
women born in 1990 who first become mothers between 2021 and 2025. Aggregate estimates are
then an average over birth years of the parents (e.g. 1990) and year of birth of the first child (e.g.
2020).

We estimate long-run effects in the spirit of their Figure 1. For simplicity, we plot the effect of the
first child on annual labor earnings in levels rather than percentages. We also exclude periods after
1997 to avoid gaps in the data.b

3.3 Results

Figure 2a reports heterogeneity-robust estimates using the CSA estimator. Due to the sample
restriction that control units must be within five years of the birth of their first child, we can only
estimate the first four post-event relative time coeflicients. Figure 2b reports heterogeneity-robust
estimates using our cohort-stacked estimator, in which the full set of eight relative time coefficients
are identified. The benefit of our estimator is that we recover the time-path up to eight years

post-event, at which effects attenuate and stabilize at a reduction of around $10,000 in earnings.

Figure 3 then highlights that long-run effects are still identified using as few as two years of data
before the arrival of the first child. In each case, we are able to identify long-run (i.e. eight-year)

effects.

4 Conclusion

This paper proposes a novel “chaining” identification strategy that expands the set of identifiable
treatment effects in staggered adoption settings where conventional DiD estimators are unable
to handle incomplete overlap between cohorts. By exploiting common trends assumptions across
overlapping cohorts in calendar time, our approach reconstructs counterfactual trends through
intermediate periods, enabling identification of treatment effects at longer horizons than existing

methods allow.

The methodology demonstrates that when standard common trends and no anticipation assump-

tions hold—as commonly maintained in the literature—current approaches unnecessarily restrict

5The PSID collected data annually until 1997, and starting in 1999 collected data biennially.



the control group and fail to fully exploit these assumptions by using only a subset of available ob-
servations. Our stacking framework jointly estimates all treatment effects for a given relative time
period, while maintaining consistency with established methodologies when both approaches are
feasible. The application to Cortés and Pan (2023) illustrates the practical value of this expansion,
particularly in settings where researchers face natural restrictions on pre-treatment observation

windows.

The key contribution lies not in imposing stronger assumptions, but in recognizing that existing
assumptions, when applied consistently across all cohorts and time periods, support a broader iden-
tification strategy than previously recognized. This creates substantial practical value for empirical
researchers working with administrative datasets or survey panels where pre-treatment observation

windows are naturally limited or staggered.
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Figures

Figure 1: Example Panel Setting
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Notes: This figure shows an example panel setting with r,;,, = —4 and Tyax = 2010 for cohorts g € G =

{2005, ...,2010}. The green shading denotes the observations for the cohort of interest, g = 2005, while the
purple shading highlights later-treated cohorts’ pre-treatment relative years. In the direct DiD estimator, the
difference between (¢, g) = (2008,2005) to (2004, 2005) and (2008,2010) to (2004, 2010) would identify the
target parameter ATT2005(2005) (blue square). As noted by the red circle, the observation at (2004, 2010) is
missing in our example since ry;; = —4. Thus there is no individual cohort that acts as a control group, as
is necessary in direct DiD estimators (Callaway and Sant’Anna, 2021). However, as we show in this note, we
can use the trend from the cohort with ¢” = 2008 under Assumption 1 (CT) to chain together two trends.
The orange squares represent the additional observations used to identify this counterfactual time trend

through chaining.
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Figure 2: Stacked DiD Identifies Long-Run Effects

(a) CSA DiD Estimates: Within 5 Years of First Child
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(b) Stacked DiD Estimates: Within 5 Years of First Child
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Notes: This figure presents estimates of parenthood on labor earnings for men and women. We adopt the
sample restrictions from Cortés and Pan (2023), where we keep only household heads and spouses/cohabiters
between the ages of 20 and 55 years old who had their first child between the ages of 20 and 45. We keep
parents who are observed at least once before and after the birth of their first child and whose earnings
outcomes are observed at least four times during the fifteen-year window (five periods before and 10 periods
after) surrounding the year of birth. Panel (a) reports the event study using the estimator from Callaway and
Sant’Anna (2021). Due to the 5 year pre-treatment window, these results are only estimated up to relative
year 4. Panel (b) reports the event study using the CCID estimator presented in this paper. With the same

pre-treatment restriction, we are able to estimate effects up to 8 years post-treatment.

11




Figure 3: Stacked DiD Estimates: Various Years to First Child
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Notes: This figure presents estimates of parenthood on labor earnings for men and women using the CCDID
estimator. We adopt the sample restrictions from Cortés and Pan (2023), where we keep only household
heads and spouses/cohabiters between the ages of 20 and 55 years old who had their first child between
the ages of 20 and 45. We keep parents who are observed at least once before and after the birth of their
first child and whose earnings outcomes are observed at least four times during the fifteen-year window (five
periods before and 10 periods after) surrounding the year of birth. We vary the pre-treatment window to
include individuals within two, three, four, or five years of their first child. We are thus able to identify

long-run effects in these samples.
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Appendix
A Identification

A.1 Recovering cohort-specific treatment effects from within-slice regression

A.1.1 Standard DiD identification within slice

Consider the regression for treated cohort g:

Yi=> vUGi=g}+> nl{t=s}+ > 6,{Gi=gr=t—g}+eu (12)
g’ s r#£—1

Under common trends and no anticipation, this regression is correctly specified. The treatment

effect is:

ATT,(g) = E[Yit(g) — Yit(00)|Gi = g] = g (13)

This is the basic DiD result without staggered timing. The ¢, coefficients are the difference between
treated outcomes and the untreated potential outcomes implied by the time trends and cohort fixed

effects.

A.1.2 Identification under partial overlap

Unlike direct DiD estimators that require complete overlap between treatment and control cohorts,
this regression remains identified when cohorts have only partial overlap. The rank condition re-
quires only that there is sufficient overlap between control cohorts to build a “chain” that connects
the reference time period to the time periods of interest. Formally, the design matrix has full rank

if and only if all cohorts and time periods belong to the same connected set.”

When this condition holds, the design matrix has full rank, which enables the separate identification

of 74, Ts, and d,4. This overlap requirement is simple to check in practice.

"This follows the logic of Abowd, Kramarz and Margolis (1999) for identifying worker and firm effects. Instead of
forming a bipartite graph of workers and firms, form a bipartite graph of cohorts and time periods, with an edge
connecting cohort g with time ¢ if g is observed in ¢t. When this fails, there is a set of time period indicators and a
cohort indicator that are perfectly collinear and therefore not separately identified.
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B Aggregation via semi-saturated regression

Proposition 1 (Weights in Semi-Saturated Regression). The coefficients 6, in the semi-saturated

Tegression

Yie =3 Y vol{Gi=g}+> > Fi{t=s}+ > 61{Gi=kr=t—k}+eu  (10)
E g ks r#—1

are cohort size-weighted averages of the underlying cohort-specific treatment effects:

0= OrgxPlGi=g|Gi=kr=t—k (14)
geg

Proof. By the Frisch-Waugh-Lovell theorem, we can partial out the slice-cohort and slice-time
effects to obtain the residuals Yj;. Since the remaining regressors are a vector of indicators, the

coefficients on these indicators are simply difference in means, relative to the omitted group. Thus
6 =EYi | Gi=k,r =t — k] —E[Yi | Gi # k or r = —1] (15)

Now consider the residuals conditional on (Gj,t, k):
E[Yiix | Gi = ¢'] (16)

Fix a slice ¥’ and notice that Assumption 1 (CT) and Assumption 2 (NA) imply that there are only
two cases. If ¢ < k' (in the pre-period) or g # k' (control cohorts), then E[Yy | Gi = g] = 74 + 7
and the within-slice cohort and time indicators fit the conditional expectation function so that
these residuals E[Yj | G; = g] = 0. Otherwise, if t > k' and g = k' then E[Yj, | Gi = g = K] =
Vg + Tt + 6rg and after partialing out the cohort and time indicators E[Yiu | G = g] = Org. Thus

- 0 ift<korg#k
E[Yir | Gi = g] = (17)
0rg ift>kandg=~k

Now, return to the two conditional expectations of residuals that identify ¢, and iterate expectations
over (Gj,t, k). Notice that we have already conditioned on G; = k so that iterating on k is sufficient

to also iterate on G;. Then

XPlk=k,G=kKt=t'|G=kr=t—k

Notice also that since everything is conditioned on r, further conditioning on both ¢ and k is

redundant, since P[t =t' | r = t — k] = 0 whenever ¢’ # r — k. Thus we can eliminate the explicit
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condition on t and simplify to

E[i}ztk ’ Gz - k; r=t— k'] = ZE[?i(tZT+k/)k/ ‘ G,L = k/]
¥ (19)
Xﬁﬂk::kC(%::k,|G%::kﬂ”:i%—k]

Notice that P[G; = k' | G; = k] =Plk =k ,G; = k' | G; = k]. Then apply Equation (17) to simplify
further:

EYitr | Gi=hk,r=t—kl =Y 6,y xP[Gi=g | Gi=k,r =tk (20)
k=g’

To complete the proof, notice that Equation (17) also implies that

E[Yj |7 =—1or G; #k] =0 (21)

Therefore:

6 = E[Yi | Gi = k,r =t — k] = E[Yinp | Gi # k or r = —1]

= 0y xPGi=g|Gi=kr=t—Fk
g€eg

(22)

This completes the proof that §, recovers a cohort size-weighted average of the underlying effects.
O
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